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Abstract 
Water body segmentation from remote sensing imagery is essential for monitoring and protecting water 

resources, as well as for assessing the risks of disasters such as flooding. However, traditional index-based 
approaches to water body identification have significant limitations. In this study, we applied and trained a 
convolutional neural network (CNN) called U-Net on FORMOSAT-5 imagery of the greater Tainan City area to 
identify water bodies. The experimental results of the U-Net model were compared with the Normalized Difference 
Water Index (NDWI) and convincingly showed that the U-Net model had achieved significantly better water body 
detection performance. 
 
Keywords: FORMOSAT-5, NDWI, U-Net, Water Segmentation, Convolutional Neural 

Network (CNN) 
 

1.  Introduction 
Water is a vital resource for sustainable societies 

and ecosystems alike. With growing global trends of 
extreme weather events such as droughts and typhoons 
due to climate change, water security has become an 
increasingly relevant point of discussion for societies. 
Achieving an accurate and insightful analysis of water 
systems is significant in providing the necessary data 
for water resource investigation, flood monitoring, 
wetland protection, disaster prevention/mitigation, as 
well as urban planning. 

Many studies have been made on extracting water 
from satellite imagery, with many well-known methods 
like the Normalized Difference Water Index (NDWI) 
(McFeeters, 1996), modified Normalized Difference 
Water Index (MNDWI) (Xu, 2005), and Automated 
Water Extraction Index (AWEI) (Feyisa et al., 2014). 
Because of their simplicity and convenience, these 
different water indices are the most commonly used 
method for water identification. While they perform 
relatively well on well-controlled datasets, they are less 
useful for water body detection in real-world conditions. 

This study is aimed at exploring the usefulness of 
applying CNNs in the identification of water bodies in 
satellite imagery when compared to traditional index-
based identification. In this study, satellite imagery 
obtained from the FORMOSAT-5 is used to validate the 
use of CNNs in the prediction of water bodies. 

In this paper, the CNN U-Net is applied to extract 
water bodies from FORMOSAT-5 Imagery. The 
FORMOSAT-5 RGB and near-infrared (NIR) bands 
were used to train and test the model. The experimental 
results show significant improvements compared to 
traditional NDWI based approach, with a greater area 
under the Receiver Operating Characteristic (ROC) 
curve. For certain studies on phenomena such as the 
Urban Heat Island Effect, differentiation between water 
and other surfaces becomes increasingly significant. 
Because roads, buildings and water bodies have 
drastically different levels of heat retention, the high 
error rate of the NDWI makes it a sub-optimal option 
for conducting studies in the area. The main 
contributions of this research are as follows:  

(1) To provide a comparative assessment between deep 
learning water identification and traditional 
methods of water identification.  

(2) To offer researchers and policy makers a new 
method to broaden the tools available for water 
body identification. 

2.  Related Work 

2.1 Traditional Index Based 
Water Detection 

The most common method of water identification 
using satellite imagery is through the use of the 
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Normalized Difference Water Index, or the NDWI, 
proposed by McFeeters (1996). The NDWI is 
computed based on the reflectivity of green and NIR 
bands. A threshold is then used to determine whether a 
point on the image is covered with water. The 
calculation for the NDWI is as follows: 
 

NDWI =    
  

  ................................... (1) 

 

where Xgreen represents the reflectance of the green band 
and XNIR represents the reflectance of the NIR band. 
Given a threshold at zero, a positive NDWI value 
should indicate that the ground is covered with water, a 
negative NDWI should indicate vegetation coverage, 
and a value close to zero should indicate rocks and bare 
soil. The threshold itself is not always zero and is 
subject to change due to various influences such as the 
turbidity of the water. 

Two main drawbacks are experienced when using 
the NDWI approach. The NDWI was poor at 
distinguishing between water and roads due to their 
overlapping reflectance. Any threshold selected would 
result in a significant amount of water or roads being 
misinterpreted as the other. Figure 1 shows a satellite 
image of urban area and the binarization result of the 
NDWI. The binarized result of applying the NDWI in 
Figure 1(b) shows the misclassification of significant 
amounts of road and buildings. Another problem with 
the NDWI is that the selection of the threshold itself is 
highly subjective and varies with time and region. 

2.2 CNN Based Water Detection 
In recent years, convolutional neural networks 

have become popular for water body detection. Miao et 
al. (2018) proposes the restricted receptive field 
deconvolution network (RRF DeconvNet) for 
extracting water bodies from remote sensing images. 
Wang et al. (2020) develop a multidimensional, densely 

connected, convolutional neural network for 
identifying water bodies from GF-1 images. Yuan et al. 
(2021) proposes a novel water segmentation method 
called multichannel water body detection network 
(MC-WBDN). These models all show the advantage in 
their ability to extract more distinctive features 
compared to traditional water index feature. However, 
the training and designing of CNN models mainly used 
imagery obtained from Landsat or Sentinel satellite 
imagery. In comparison, there are significantly fewer 
deep learning studies done using FORMOSAT5 
imagery and even fewer using FORMOSAT-5 Imagery 
for water body identification using deep learning 
algorithms. 

Many studies have proposed the use of different 
variations of improved U-Net models in particular for 
water-body extraction. One such study was conducted 
by Qin et al. (2021) which uses an improved U-Net 
framework for small water body extraction using 
satellite hyperspectral imagery of Taihu lake in Suzhou 
City, Jiangsu province, China. The hyperspectral 
imagery used in the study comprise of 32 spectral 
channels with a 10m spatial resolution. The results 
show a recall and precision of 0.8903 and 0.8950 
respectively for their proposed improved U-Net model. 
In comparison, the U-Net model reached a recall and 
precision of 0.82 and 0.88 respectively which was a 
significant improvement over the 0.60 and 0.62 
achieved by the NDWI. Another study done by An and 
Rui (2022) proposed an improved lightweight U-Net 
model called BU-Net for water body extraction. The 
study used multispectral imagery of 60 cities across 
china with 4 spectral channels and a 3.24m spatial 
resolution. The results of the study indicated a 
significant improvement in water body detection using 
both U-Net and BU-Net in comparison with the NDWI. 
The BU-Net model also achieved better results than 
other commonly used networks such as ResNet and 
SegNet. 

 

           
(a)                                      (b) 

Figure 1 (a) The satellite image of an urban area; (b) Binarization result of the NDWI. Note that water bodies can 
be correctly identified. However, the NDWI also tends to misclassify road and buildings as water 
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3.  Data and Data Preparation 

3.1  Study Area and Data Source 
Our research area covers the downtown Tainan 

and its suburban area (including Xinhua, Xinshi, 
Anding, Shanhua, Danei, and Shanshang districts). We 
obtained the FORMOSAT-5 imagery of this area from 
the Data Market of the National Center for High-
performance Computing, Taiwan (National Center for 
High-Performance Computing, 2018). This 
multispectral (MS) imagery of FORMOSAT-5 has the 
size of 7824×6935 and comprises of Red, Green, Blue, 
and NIR bands. Table 1 provides detailed information 
regarding the multispectral bands and the spatial 
resolutions of FORMOSAT-5. The satellite image used 
in this study belongs to grid index G016 and was taken 
on March 10, 2021. 

 
Table 1 Spectral bands of FORMOSAT-5 used in this 

study 
band Spatial resolution [m] wavelength [nm] 
1 - Red 4 640 - 690 
2 - Green 4 525 - 605 
3 - Blue 4 450 - 515 
4 - NIR 4 750 - 900 

3.2  Data Preprocessing 
The satellite imagery is preprocessed in order to 

train the U-Net model. The details of our data 
preprocessing procedure are described below. 

Except for the satellite imagery, we also need to 
create a ground truth of the water region to train the AI 
model. Given the satellite imagery as shown in Figure 
2(a), we cropped a corresponding raster map of the 
same area as shown in Figure 2(b). Here, we chose the 
CARTO’s Voyager basemap over Google Maps or 
Open Street Map because it provides a free raster map 
without a legend (CARTO, 2017). Notice that the 
legend (or text labels) might cause confusion when we 
extract water regions from a map. The basemap was set 
to the same spatial resolution as the FORMOSAT-5 
imagery when cropping. While we were unable to find 
details on the specific map version, CARTO’s Voyager 
updates frequency, so there should be negligible 
discrepancy in the mapping time when compared with 
the FORMOSAT-5 imagery obtained in 2021. Since the 
water regions on a map have a fixed color, one can 
easily extract water regions from the map. Specifically, 
we let (R,G,B) denote the RGB values at a pixel 
location and (Rw,Gw,Bw) denote the RGB values of 
water. In the CARTO’s Voyager basemap, the RGB 
values of water region is (213, 232, 235). We computed 
the difference d between these two colors as follows. 

 

           
(a)                                           (b) 

           
(c)                                           (d) 

Figure 2 (a) The satellite image used in this study; (b) The corresponding Basemap; (c) The mask of the water 
region in the satellite image; (d) The mask of the water region in the lower part of the satellite image, 
where we perform evaluation of the NDWI and U-Net. Thus, we can use this mask to generate the 
distributions of these approaches as shown in Figure 6  



240                     航測及遙測學刊  第二十七卷  第四期  民國 111 年 12 月 

 

푑 = (푅 − 푅 ) + (퐺 − 퐺 ) + (퐵 − 퐵 )   ....... (2) 
 

If d is greater than a predefined threshold value, then 
that pixel location is considered a non-water region and 
converted to black. Otherwise, that pixel location is 
considered as water region and converted to white. The 
resulting mask of water region is shown in Figure 2(c). 

4.  U-Net Model 
A convolutional neural network is a class of 

artificial neural networks mainly used for the purpose 
of image recognition. The architecture CNNs generally 
use varied combinations of convolutional and pooling 
layers alongside other processes like padding and 
concatenation to achieve the desired outcome. The 
network utilizes automated learning to optimize the 
filters in the convolutional layers, giving the major 
advantage of independence from human intervention. 

U-Net is a convolutional neural network that was 
created for the purpose of biomedical image 
segmentation (Ronneberger et al., 2015). The network 
itself is composed of a contractionary path and 
expansionary path, giving it a U-shaped architecture. 
The network is used for semantic image segmentation, 
which means the network assigns every pixel in the 
image a predefined class nomenclature and outputs a 
high-resolution image of a similar size to the input. In 
the context of this paper, the purpose of identifying 
water bodies is not whether they are independent bodies 
of water, but simply whether there is water in the given 
image. 

Figure 3 shows the architecture of U-Net. The 
contractionary path continuously samples the feature 
maps of different resolutions through convolution and 

pooling while the part of the expansionary path up-
samples the features obtained by the final encoder and 
then splices them with the features before the original 
down-sampling. The process of decoding occurs until 
the encoder and decoder have the same depth. 

5.  Experiment Results and 
Analysis 

5.1 Experimental Setup 
In order to generate training, validation, and 

testing sets for experimental evaluation, the original 
satellite is divided into three parts. In particular, we 
generate training, validation, and testing samples from 
the upper, middle, and lower parts of the original 
satellite imagery (as shown in Figure 4). In order to 
have a sufficient amount of training samples, our 
training samples are overlapped with each other. As 
shown in Figure 5, we crop a block of 512 × 512 pixels 
and then shift 128 pixels to crop another one. Figure 5 
shows that we can generate 25 training samples of size 
512×512 from an image block of size 1024×1024. By 
doing so, we can generate significant number of 
512×512 blocks from the upper part of the original 
satellite imagery. Blocks that did not cover any water 
region were excluded from our training set. In total, we 
generated 824 training samples, each 512×512 pixels in 
size. 

For the validation samples, we cropped non-
overlapping blocks from the middle part of the original 
satellite imagery. In total, we generated 44 samples in 
the validation set. Similarly, the testing samples do not 
overlap and we can generate 55 testing samples from 
lower part of the original satellite imagery. 

 

 
Figure 3 The U-Net architecture (Ronneberger et al., 2015) 
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Figure 4 We divide the original satellite image into three parts (indicated by the red lines). We extract training, 

validation, and testing samples from the upper, middle, and lower parts, respectively. The training samples 
overlap with each other while the validation and testing samples do not overlap. Each sample is of size 
512×512 pixels 

 

 
Figure 5 A satellite image block (left) and the cropped patches (right) from this block. The values on each line 

segment denote the first and last pixel locations of that cropped patch in the image block. In particular, 
we crop a 512×512 patch starting from the upper-left corner. Then, we shift horizontally or vertically by 
128 pixels to crop another patch. Since these 512×512 patches are partially overlapped, we can obtain 25 
patches from a 1024×1024 image block 
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The implementation details of training the U-Net 
model are listed as follows. We utilize Google Colab 
cloud computing service to train the U-Net model. We 
combine both the Binary Cross-Entropy (BCE) loss and 
the dice loss as our loss function. The batch size is set 
to 11 and the learning rate is set to 0.0005. The number 
of epochs is set to 20. Additionally, the Adam optimizer 
(Kingma and Ba, 2014) is used to speed up the training 
process. 

5.2 Experimental Results 
After training the U-Net model using the training 

and validation sets, we can feed the testing samples into 
the U-Net model and see if it can correctly identify the 
water regions. The lower part of Figure 4 shows where 
we obtain our 55 testing samples and Figure 2(d) shows 
the corresponding mask of water regions. To establish 
a baseline for comparison, we also compute the NDWI 
in the same area. Figure 6 show the distribution of the 
NDWI values and the U-Net model’s output values. 

In Figure 6(a), the distributions of NDWI values 
from non-water and water regions overlap significantly. 
Therefore, if we use the NDWI for identifying water 
regions, both false negative rate and the false positive 
rate would be very high. 

In Figure 6(b), the distributions from the two 
regions are much more separate, with only a small 
portion of results overlapping with non-water region 
values. There is still a considerable amount of false 
negatives but the false positives are significantly 
reduced. Compared to the results of the NDWI, it 
indicates a noticeable improvement in the 
discrimination between non-water and water regions. 

To objectively evaluate whether the U-Net model 
is better at identifying water than the NDWI, an 
effective and quantitative comparison is needed to 
further verify the qualitative analysis above. Among 
many quantitative metrics for evaluating segmentation 
results, we choose Receiver Operating Characteristic 
(ROC) curve because it is not affected by threshold 
setting. An ROC curve is plotted with true-positive rate 
(TPR) against false-positive rates (FPR) (i.e, TPR is on 
the y-axis and FPR is on the x-axis). The calculation 
formulas of the TPR and FPR are as follows: 
 

푇푃푅 =   ................................................. (3) 

 

퐹푃푅 =    ............................................... (4) 

 

where TP denotes the number of true-positives (i.e., the 
number of pixel locations which belong to water region 
and are correctly classified as water region), FN 
denotes the number of false-negatives (i.e., the number 
of pixel locations which belong to water region but are 

incorrectly classified as non-water region), FP denotes 
the number of false-positives (i.e., the number of pixel 
locations which belong to non-water region but are 
incorrectly classified as water region), and TN denotes 
the number of true-negatives (i.e., the number of pixel 
locations which belong to non-water region and are 
correctly classified as non-water region). 

 

 
(a) 

 
(b) 

Figure 6 (a) The distribution of NDWI values from the 
non-water and water regions; (b) The 
distribution of U-Net’s output probability 
values from the non-water and water regions. 
Notice that Figure 2(d) shows the non-water 
and water regions used for this evaluation 

 

Thus, one can plot an ROC curve by obtaining the 
TPR and FPR at varied discrimination thresholds. 
Figure 7 shows the ROC curves of the NDWI and the 
U-Net. The ROC curve of the U-Net model is above the 
ROC curve of the NDWI for all points. The NDWI and 
the U-Net achieves AUC of 0.774 and 0.857, 
respectively. In other words, at any given FPR, the U-
Net can achieve higher TPR than the NDWI. For 
instance, at the FPR of 20%, the U-Net model can 
achieve TPR of 72.8% while the NDWI only achieves 
of TPR of 64.3%. Or, we can also compare the FPRs of 
two approaches at any given TPR. It is clear that the U-
Net consistently achieves lower FPR than the NDWI. 
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Figure 7 The ROC curves of using NDWI and U-Net 

for detecting water bodies from FORMOSAT-
5 satellite image. Here, U-Net (GN) denotes 
the model trained using the same bands as 
NDWI: Green and NIR. U-Net (RBGN) 
denotes the model trained using all four 
spectral bands available: Red, Green, Blue and 
NIR. The NDWI, U-Net (GN) and U-Net 
(RGBN) achieve AUC of 0.774, 0.753 and 
0.857, respectively 

 
For instance, at the TPR of 80%, the FPR can be 

reduced from 52.4% to 32.9% by replacing the NDWI 
with the U-Net. Notice that the number of negative 
samples (i.e., non-water region) is usually much larger 
than the number of positive samples (i.e., water region) 
as shown in Figure 6. Thus, reducing about 20% of FPR 
indicates that a significant amount of false-positives are 
eliminated without compromising the accuracy of 
water body detection. 

5.3 Discussion 
This study shows the application of a U-Net CNN 

for identifying water bodies in the greater Tainan City 
area utilizing FORMOSAT-5 imagery. In Figure 8, the 
several sample results of the study are shown. The first 
column on the left shows the reference satellite imagery 
obtained from FORMOSAT-5. The 2nd column shows 
the Basemap used to obtain the ground-truth for 
training the U-Net model. The 3rd column shows the 
reference Google map image. When observed carefully, 
the water regions are not always consistent between the 
Google map and the Basemap. One noticeable example 
are the aquaculture ponds visible on the bottom left side 
of the images in the 3rd row. The 4th column shows the 
water segmentation results of the NDWI. Notice that in 
rows 1 to 3, while the NDWI was able to identify most 
of the areas covered with water, it also misinterpreted a 
lot of roads and buildings as water. The final column of 
Figure 8 shows the segmentation results of the U-Net 
model discussed in this study. While the U-Net 
software was not able to perfectly identify the water 
bodies in the satellite imagery, it was able to effectively 

avoid identifying roads and buildings as false positives, 
which demonstrates the advantage of using a U-Net 
CNN model. The difference is further quantified in 
Figure 7 and explained in Section 5.2. 

In order to evaluate the usefulness of using all four 
spectral bands, the U-Net model was trained using two 
spectral bands (Green and NIR) as the input. In Figure 
7, the ROC curves of the U-Net models using two 
bands and four bands are denoted as U-Net (GN) and 
U-Net (RGBN), respectively. When using two bands, 
the U-Net achieves a lower AUC (0.753) than the 
NDWI does (0.774). This indicates the usefulness of 
the NDWI in water body segmentation when there are 
only Green and NIR bands available. When using four 
bands as the input to the U-Net model, the AUC is 
significantly improved from 0.774 to 0.857. This 
demonstrates the advantage of using a deep learning 
approach for extracting discriminative information 
from other spectral bands to improve segmentation 
results. The advantage would be more considerable if 
we have more bands like hyperspectral remote sensing 
images. 

6.  Conclusions 
This study effectively shows the comparison 

between the results of water body segmentation 
between the traditional NDWI based approach and a U-
Net convolutional neural network model using 
FORMOSAT-5 imagery. While index based approaches 
still have the benefit of being simple and easy to apply, 
considering the improvement in recognition accuracy, 
the training time is negligible. As such, this method can 
be used for other hydrological studies such as the 
exploration of the Urban Heat Island Effect. Because 
roads, buildings and water bodies have drastically 
different levels of heat retention, the high error rate of 
the NDWI makes it a sub-optimal option for conducting 
studies in the area. The effectiveness of using the U-Net 
model in this study warrants the exploration of other 
CNN models in not only the image segmentation of 
water other aerially visible objects such as roads and 
buildings using imagery obtained from FORMOSAT-5. 
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Satellite Image    Voyager Basemap     Google Map           NDWI              U-Net 

 

 

 

 

 
Figure 8 The 1st column shows the satellite images covering the North, West Central, South, Guiren, and Guanmiao 

Districts of Tainan City (from top to bottom). The 2nd column shows the corresponding Basemaps which 
serve as the ground truth in this study. The 3rd column shows the Google map of the same areas. Notice 
that the water regions on Basemap and Google map are not always consistent, especially for rural areas. 
The 4th column shows the water segmentation results of the NDWI. The 5th column shows the water 
segmentation results of the U-Net 
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運用 AI 技術進行衛星影像的水域辨識 
 

林威昕 1*   張揚暉 2 

摘要 
許多衛星影像的分析應用 (例如：分析熱島效應、揚塵區域、河道變遷、水資源的監測與保護、評估

洪水災害) 都仰賴於正確地找出水域範圍，進而才能夠得到有意義的分析結果。目前，最普遍被用於衛星

影像的水域偵測方法為常態差異化水體指標 (Normalized Difference Water Index, NDWI)，但我們觀察到該

方法用於福衛五號衛星影像時，要找出水域會有一些問題 (例如容易將道路、建築物誤判為水域)。基於

這樣的觀察，我們率先嘗試運用深度學習技術來進行福衛五號衛星影像的水域分割。我們採用的卷積神

經網路架構被稱為 U-Net，實驗結果顯示相較於 NDWI，U-Net 的水域分割準確率有著顯著提升。 

 

關鍵詞：福爾摩沙衛星五號、NDWI、U-Net、水域分割、卷積神經網路 
 


